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Abstract-The following assumptions are made for the case of nucleate pool boiling in the regime 
of individual vapour bubbles: (a) rising bubbles carry with them thin boundary layers of superheated 
liquid, broken away at their departure, from the boundary layer of the heating surface; (b) the distur- 
bances caused within the bulk by the bubbles are the same as if the bubbles were solid bodies of the 
same shape and size. 

Using the theory of virtual masses and the above assumptions, relations for the growth rate and 
rise velocity of the bubbles are developed, which are found to be in satisfactory agreement with 

available experimental data. 
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area of surface ; 
thermal diffusivity; 
semi-axes of a planetary ellipsoid; 
numerical coefficients ; 
specific heat of the liquid; 
average diameter of a departing 
bubble ; 
eccentricity of the ellipsoid; 
buoyancy force of a bubble; 
adhesive force of a stalked bubble; 
frequency of bubble production in a 
centre; 
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growth rate-of a bubble; 
average spacing between 
bouring active centres; 
kinetic energy; 
temperature ; 

neigh- 

mean velocity within the boundary 
layer of the heating surface; 
rising velocity of a bubble; 
resistance due to friction ; 
expansion velocity of a boundary 
layer ; 
variables ; 
time derivative of quantity x. 

acceleration of gravity; 
surface heat-transfer coefficient; 

Greek symbols 

height of bubble centre over hot Up 
surface tension coefficient ; 

plate ; 
a, B, y, K, numerical coefficients or exponents; 
f thickness of a boundary layer; 

coefficient of apparent mass; 
density; 
contact angle in sexagessimal 
degrees ; 
time ; 
coefficient of friction; 
coefhcient of dyanmic viscosity. 

Bessel function of order p and 
imaginary argument; 

L: 

coefficient of thermal conductivity; 
latent heat of vaporization ; 

i7; 

representative length; 
mass ; 7, 

virtual mass; 5, 

numbers ; v, 

vapour and saturation pressures Subscripts 
respectively; b, 
heat flux ; 
radius ; 2 
radii of interfaces of a bubble 0: 
boundary layer; S, 
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bulk conditions ; 
expansion ; 
liquid; 
departure conditions; 
saturation ; 
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t, translation; 
tr, transverse ; 
4 vapour ; 
W, wall conditions. 

1. INTRODUCTION 

1.1 General remarks 
NUCLEATE pool boiling in the regime of isolated 
bubbles is characterized by the periodic forma- 
tion of individual vapour bubbles in certain of 
the small cavities of the heating surface, where 
gas or vapour microbubbles, previously retained 
there, serve as nuclei. 

These cavities, also called “nucleating or 
active centres” are distributed at random over 
the heating surface or plate and it is not yet 
possible to predict whether or not particular 
cavities of this surface will become active, or at 
what moment they will begin or cease to be active. 

One could see the formation of bubbles 
suddenly ceasing in some of the active centres, 
without any apparent reason, the activity being 
immediately taken over by neighbouring centres 
or even, after a short delay, resumed by the 
initial ones. 

It is now well established that bubbles do not 
form without the presence of nuclei (micro- 
bubbles of gas or vapour or very small solid 
particles in suspension) and also that bubbles 
successively leaving the same cavity are not 
equal nor are they equal to those leaving neigh- 
bouring cavities. 

The density of active centre distribution over 
the heating surface, the frequency of bubble 
production at a given centre, the contact times 
of the bubbles and the magnitude and shape of 
the bubbles all depend on a multitude of more or 
less independent parameters such as the micro- 
geometry of the wetted face of the heating plate, 
its condition and nature, the physical properties 
of the bulk liquid, the pressure and temperature 
fields, the heat flux intensity, the motion of the 
liquid in the vicinity of the heating plate. This 
simple enumeration is sufficient to emphasize the 
statistical character of nucleate pool boiling. 

No wonder therefore, that in spite of the 
several papers dedicated in recent years to the 
study of this complex phenomenon, most of 
which are of remarkable value, progress is still 
slow. Attempts are being made to penetrate the 

intimate details of the phenomenon of boiling, 
to understand what is happening in the cavities, 
grooves or pores of the heating surface, to detect 
the mechanism of bubble formation, to know the 
manner in which gas or vapour microbubbles are 
entrapped in the cavities of the heating surface 
[I]. This kind of research will certainly not fail to 
elucidate certain facets of the phenomenon. 
However, complete understanding has not 
been reached even of certain macroscopic 
aspects of nucleate pool boiling, such as the 
growth and evolution of isolated vapour 
bubbles. 

It is the aim of this paper to try to improve in 
some measure the knowledge of these particular 
aspects. 

Recently it was suggested that a close analogy 
exists between natural convection and nucleate 
pool boiling in the region of isolated bubbles 
[2-41. 

Based on this analogy, it was possible to set 
up a sufficiently close representation of the 
phenomenon of nucleate pool boiling in the 
region of isolated bubbles. 

Research has shown that the bubble forma- 
tion is a step-by-step process. During a certain 
preliminary time Td, the bubble still visually 
unperceivable, grows in its generating cavity 
pushed forward by the nucleus existing there. 
Then it appears at the surface of the plate, where, 
still attached, it continues to grow, now covered 
by the strongly superheated boundary layer of the 
heating surface, from which it gets most of the 
heat and all of the vapour it needs for growing. 

While growing, the bubble impinges upwards 
on the covering layer, which results in a weak 
ascending current of superheated liquid above 
the active centre. 

This second phase of the bubble evolution has 
a duration Tb lasting until the bubble has 
reached a certain critical volume V,. Then the 
buoyancy-force, together with the action of the 
surrounding liquid, overcomes the adhesive 
forces and the bubble detaches and starts its 
rising motion. But generally a little before its 
break-off the bubble develops a thin pedicular 
stem, by which it remains attached to the heating 
surface while its spherical part begins to rise. 
The pedicle, extended by the rise of the bubble, 
begins to shrink and at a certain moment breaks. 
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As more comprehensively shown below, the 
bubbles departing from an active cavity carry 
along with them certain amounts of superheated 
liquid, drawn from the boundary layer of the 
heating surface, Relatively cooler bulk liquid 
replaces them instantly, surrounding the quite 
small lower part of the broken pedicle, which 
then contracts and possibly condenses partly. 
Thus only a tiny amount of vapour remains 
inside the cavity, where it becomes the nucleus of 
the next bubble. 

Meanwhile the upper part of the broken stem 
rapidly re-enters, like a recoiling spring, into the 
bubble, forming a concavity on its lower part. 
This concavity, together with the effect of the 
resistance of the bulk liquid-which arises as 
soon as the bubble begins to move-is at the 
origin of the known lenticular shape which the 
bubble reaches almost immediately after its 
break-off and which it keeps during almost its 
whole rise. Only when it approaches the free top 
surface of the liquid, the bubble tends to reach 
again the spherical shape, owing to the rapid 
decrease of the hydrostatic pressure there. 
Figure 1 shows the different stages of the evolu- 
tion of a bubble, from the momenl; shortly 
before its break off up to the formation of the 
lenticular shape. 

After breaking off, the bubble follows the 
path of the weak current of superheated liquid 
developed over its generating cavity. While 
rising it pushes forward above it, and drags 
laterally by friction and in its wake by suction, 

certain quantities of superheated liquid drawn, 
at its departure, from the boundary layer of the 
heating surface, by which it was covered before 
starting its rise. 

In this way an ascending current of super- 
heated liquid begins to circulate around and 
behind the rising bubble. Part of the liquid 
drawn by this current masses together against the 
bubble and forms the bubble’s own boundary 
layer, which will feed it with heat and vapour 
during the rise. The remainder of the superheated 
liquid, rising in the trace of the bubble, diffuses 
progressively into the bulk, giving up its super- 
heat. This amount of heat, together with the 
heat pentrating directly by convection from the 
heating plate into the bulk, is the origin of the 
slight superheat of 0.3 to 0.6 degC of the bulk 
liquid, first observed by Max Jakob and co- 
workers. The bubble and its associated currents 
are replaced by descending currents from the 
bulk. The relatively cooler liquid of these 
currents enters the boundary layer of the heating 
plate, and whilst renewing its content, ensures 
the continuity of the process (Fig. 2). 

It seems feasible to assume that the thickness 
of the bubble’s own boundary layer, at the 
beginning of its rise, is of the same order of 
magnitude as that of the layer which covered the 
bubble before its break-off. 

During the rise of a bubble the boundary 
layer of superheated liquid surrounding it may 
grow or decay depending upon the local con- 
ditions in the bulk through which the bubble is 
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passing and also upon conditions within the 
bubble boundary layer itself. 

When a bubble enters into a superheated 
region of the bulk, it continues to grow, while 
rising, and bursts when reaching the free surface 
of the liquid. Alternatively, when it penetrates 
into a subcooled region it begins to reduce its 
growth rate and after reaching a certain maxi- 
mum volume, as a result of the stored heat 
content of its boundary layer, it begins to shrink 
and finally collapses by condensation. 

1.2. Motion of vapour bubbles and virtual mass 
theory 

The behaviour of an isolated vapour bubble 
during its rising motion is hydrodynamically 
similar to that of an immersed solid body moving 
in a fluid medium. The large deformations of the 
bubbles during their motion are proof that, like 
solid bodies, theytoo are subjected to interactions 
with the bulk liquid. These interactions cannot 
differ from those which solid bodies of the same 
shape and magnitude undergo when moving 
with the same velocities across the bulk. 

It seems suitable, therefore, to have recourse 
to the theory of virtual masses for vapour 
bubbles in exactly the same manner as for 
immersed solid bodies. However, it must be 
taken into account that, unlike solid bodies, the 
vapour bubbles change their size and shape 
during their motion. 

It has long been known that an immersed 

body in non-unifbrm motion within a fluid moves 
as if its own mass has been increased by an 
additional one, called “the apparent or associated 
mass”. This may be explained as follows: The 
movement of the immersed body produces 
disturbances which propagate like waves through 
the entire bulk liquid, regardless of its extent. 
For the acceleration of the liquid involved in 
these disturbances a certain amount of kinetic 
energy must be spent; the apparent mass, when 
moving with the velocity of the solid body, 
would require this amount of energy. 

Let M be the mass of the solid body, Y’ the 
volume of its immersed part, M’ the mass of the 
displaced liquid and Ma the apparent mass; then 

Ma = TV M’ = pp~ V’. O-1) 

For the total fictitious mass, called “virtual mass”, 
we can write 

M, = M + M, = M + /LPL V’. (l-2) 

This virtual mass is introduced into the equations 
of motion of the immersed body or the bubble. 

The coefficient of proportionality p which 
appears in (l-l) and (l-2), called “the coefficient 
of apparent masses”, depends on (a) the shape 
and size of the immersed part of the solid body, 
and (b) the kind of motion of the body. Generally 
of a tensoral character, the coefficient f~ reduces 
to a scalar if the motion is a simple translation 
without rotation or a radial expansion (dilata- 
tion) [5]. 

For such motions the definition of the 
coefficient p is expressed by the relation 

Ma iMav2 
CL = -MY = -4 M’ $ 

kinetic energy of disturbances 
~ (l-3) 

Z kineticenergy of displacement 

During the greater part of their rise through 
the bulk liquid, the bubbles maintain an almost 
lenticular shape. The closest regular geometric 
body to this shape is the oblate spheroid 
(planetary ellipsoid), for which we shall now 
determine the coefficient of apparent masses CL. 
Since the vapour bubbles are performing a 
compound motion composed of a translation 
and a simultaneous expansion, we shall de- 
termine first the coefficients of apparent masses 
for each of these two motions separately and 



ON THE GROWTH AND RISE OF INDIVIDUAL VAPOUR BUBBLES 1373 

then calculate a coefficient for the compound sphere, i.e. 
motion. 

(cz) Tr~lat~o~. Let a be the equatorial and b 
the polar semi-axis of a planetary ellipsoid, 
moving along its polar axis. The coefficient of 
apparent masses for a translation pt, is [6] 

a e - (arc sin e) (1 - e2)” 
” = b ’ (arc sin e) - e (1 - e2)* 

a e - (arc sin e) (b/a) 

= b ‘ (arc sin e) - e (b/a) 

where e = (1 - 8s/a2) is the eccentricity, b < a. 
Of special interest for future derivations is the 

case where 

a/b M 2.4 

which corresponds to the average lenticular 
bubble. For this particular case it yields 

I”t = 1.34. (l-4) 
(b) Expansion. Departing from the definition 

given above, the coefficient of apparent masses 
F~, for an expanding, spherically shaped body, 
will be 

me = Me/M' 
where Me is the apparent mass corresponding to 
a radial expansion of the body and M’ the 
displacement of the body. 

The kinetic energy of the disturbed liquid is 

T,=*Tf2ptdV=2npr,yi2xr2dr 
R R 

where 

R is the radius of the sphere; 
dV = 4rr rz dr, the volume of an element of 

disturbed liquid ; 

i is the radial velocity of the element. 
Since the equation of continuity is 

4vr2 x i=4rrR2~ li, 

it follows that 

3”e = 2n PI, 9 ($2 r4) drjr2 = 277 pi R4 x 
R 

kTdr/r2=2rrpLRa x &=sM’l@ 

On the o<er hand, according to the definition 
of the apparent masses 

Te = 3 Me w2 

where w is the velocity of expansion of the 

H.M.-40 

Subsequently 
WR3 R. 

so that 

Me = 3M’ 

and therefore 

Fe = M~lM’ = 3. (l-5) 

(c) Resultant motion. The bubbles perform a 
motion consisting of an almost rectilinear 
translation combined with a simultaneous radial 
expansion, both without rotation. Generally the 
translation is the dominant motion. 

Define a coefficient of apparent mass for the 
compound motion as 

total kinetic energy of the disturbances 
’ = total kinetic energy of the displacements 

tMtu2+&Me@ 

= gM’vZ+ g.M’w2 

If the translation is the dominant motion, then 
ws g vs and 

Me Me@ 
rz=-@- &ffv2 = pt + $ s Cte (l-6) 

For boiling water the velocity of translation in 
the vicinity of the plate is of the order of 
v = 0.18 m/s whereas the velocity of expansion 

w fi: A M 0.0~*05 m/s 

so that an average value for the ratio w/u is 

w/v M l/4 

and one may assume that the same ratio remains 
valid for other vapours too (See Section 5). 

For the lenticular bubbles a mean value of 
a/b is 2.4, thus, as previously shown, pd = 1.34, 

If it is assumed that for such shapes a value of 
3 for pe may be maintained, then the value of the 
coefficient of apparent mass for the compound 
motion, in the vicinity of the plate, is 

jz = 153 

or rounding off 

p = 1.50 (l-7) 
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a value which will be adopted in later calcula- 
tions. 

For increasing time, v increases whereas R 
decreases owing to the growth of the bubble 
volume, thus the second term on the right-hand 
side of (l-6) decreases rapidly so that 

lim ii = pt. (l-to 
7-+cc 

1.3. Thickness of the boundary layers 
The superheated layer circulating over the 

heating surface is in some measure similar to the 
boundary layer developed over a flat plate by a 
laminar steady state parallel Aow. Therefore its 
thickness will be approximately [7] 

where 

6 = 5.8 I Re-k, Re = IiiJv 

6 is the thickness of the boundary layer; 
1 is the characteristic length; 
ti is the mean velocity within the layer; 
v is the dynamic coefficient of viscosity; 

It was shown by Zuber [2], Hsu and Graham [8], 
Gaertner [9] and Kutateladze [lo] that in order 
to maintain the production of individual bubbles 
in nucleate pool boiling, it is necessary that the 
spacing between neighbouring active centres 
does not become lower than 1.5-2.0 DO, where 
DO = 2Ro is the diameter of an average departing 
bubble (Fig. 3). 

For water 100°C and 1 atm pressure with a 
mean spacing of s = 3.5 Ro the characteristic 

length appearing in the Reynolds number 
becomes I= 4s -- RO -= 0.75 RO so that with a 
mean velocity of U = 5 cm/s and a coefficient 
v = 3.103 cm2/s it follows that 

6/Ro =- l/2.86. (l-9) 

Gunther and Kreith [ 111 and Forster [ 121 arrive 
by different ways at the value 

6/Ro = 1/3 

which is of the same order of magnitude. 
As for the assumed mean value of u = 5 cm/s, 

it may be observed that it is of the same order of 
magnitude as the growth-rate of the attached 
bubble. Indeed assuming that the bubble, while 
growing, displaces the liquid of the thin super- 
heated layer which sweeps the plate, the follow- 
ing is obtained : 

2n~6d=nR;R~ 

and with 

r = 1 a5 RO and 6 w Ro/3 

it yields 

ii N R. 

and as shown later, RO has a value of almost 
5 cm/s for attached bubbles. 

Consider now the boundary layer of a rising 
bubble. Up to its break-off, the bubble is covered 
by the boundary layer of the heating surface. 
When it departs, it is from this layer that the 
bubble acquires the amount of liquid from which 
it will make its own boundary layer. It seems, 
therefore, justified to assume that at least at 
departure the thickness 6’ of the boundary layer 
of a bubble will be almost the same as that of the 
boundary layer of the heating surface, i.e. 

6’ S% 6. (l-10) 

Turning now to the virtual mass concept, it 
ensues that the imaginary layer obtained when 
applying the apparent mass uniformly over the 
bubble interface, would have the same order of 
magnitude as (l-9) or (I-10). Indeed if 6” is the 
thickness, R the internal radius and R’ the 
external radius of this imaginary layer, then 

6” = R’ - R = [(1 + 9113 - ]] R = K R 
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and with fi = 1.5 in the vicinity of the plate, it 
results that 

8” = Rj2N 

i.e. almost the same value as above. 

(l-l 1) 

This close agreement is, however, only co- 
incidental, but the order of magnitude of the 
different thicknesses must be the same. This may 
be explained as follows: 

The concept of a dynamic bounda~ layer, and 
subsequently that of a thermal one, was intro- 
duced with the aim of avoiding the considerable 
difficulties encountered in the integration of the 
original Navier-Stokes equations for turbulent 
flows. But even the simplified equations of 
Prandtl cannot generally be integrated without 
having recourse to certain empiric laws for the 
distribution of the velocities within the boundary 
layer. Since for this distribution numerous 
different laws have been proposed, a wide range 
of different values for the same thickness of the 
bounda~-layer have been obtained. 

However, regardless of the method used to 
determine the velocity distribution, the corre- 
sponding boundary layer thicknesses are of the 
same order of magnitude. 

On the other hand, the concept of perfect 
fluids, i.e. fluids deprived of any internal friction, 
has been proved, for example, to be a very 
effective instrument in most of the problems 
regarding navigation, since the viscosity of the 
water is very low. 

But special problems, e.g. those of the motion 
of immersed bodies, cannot be solved without, 
directly or indirectly, considering the viscosity 
effects. It was therefore necessary to devise a 
conceptual framework that would take the 
viscosity effects into account, without discarding 
so convenient an assumption as that of perfect 
fluids. 

As a result, the virtual mass concept was de- 
veloped. The value of the imaginary masses in- 
troduced by virtue of this concept is largely 
dependant upon the shape, size and motion of 
the immersed body, all of which are only very 
approximately known in the case of vapour or 
gas bubbles. 

Nevertheless, if related to the same motion, 
both approaches must lead to results, not 
identical, evidently, since means and methods 

are different, but of the same order of magnitude, 
because they are both taking into account the 
same viscosity effects. 

It is therefore permissible to assume that 
between the volume of the bubble and of its 
boundary layer there must exist the relation 

lG,yer m pvbubble 

with p having the same value as that for the 
corresponding apparent mass, or one very close 
to it. 

2. MOTION AROUND THE CENTRE OF GRAVITY 
OF A BUBBLE 

Consider an expanding spherical vapour 
bubble (Fig. 4) and let R and R’ be the internal 

FIG. 4 

and external radii of an imaginary layer replacing 
the apparent mass of the bubble. 

Neglecting the mass of the vapour itself and 
omitting the translation of the bubble (since only 
the motion around the centre of gravity is being 
considered) as well as the heat and mass transfer 
due to the vaporization taking place at the 
vapour-liquid interface, the following energy 
equation may be written: 

variation of the kinetic energy of the apparent 
mass = work done by pressure less work done 
by surface tension. 

With 

V = $ r R3, the volume of the bubble; 
A = 4 rr R2, the area of the interface of the 

bubble ; 
w, the radial velocity of a particle of the 

imaginary layer ; 
pu, ps, the vapour and saturation pressures; 
a, the surface tension coefficient; 
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the above equation becomes 

d(p,pL. V. ~~/2)=(pv--ps)dV--adA. 

(2-l) 

Owing to the insignificant thickness of the 
imaginary layer 

6 = (R’ - R) w R/3 

we may assume that the radial velocity of a 
particle of this imaginary layer is approximately 
equal to that of the points of the vapour- 
liquid interface, i.e. 

W%A (2-2) 

so that equation (2-l) becomes 

4 t&R + % k2) = (pv - ps)Ip~ - WPL R. 

(2-3) 

Introducing in this equation the value (l-5) of 
the coefficient of apparent masses for expansions, 
i.e. 

pe = 3 

we obtain the equation 

Rit + $ It2 + 201~~ R = (pv - ps)/p~ (2-4) 

which is the well-known equation of Rayleigh 
[131. 

As to the relative importance of the different 
terms of this equation, it may be pointed out that 
the effect of the surface tension may always be 
neglected in comparison with that of the 
pressure difference. This statement can be 
justified by the following considerations. 

The so-called “critical radius” of a gas 
bubble, i.e. the radius of a bubble at the moment 
it starts to grow, as given by the formula of 
Laplace-Kelvin is 

R . _ _2% x 
mln-Pv-PPs. pr,-pv 

= W(Pv - Ps) 

since pv < PL. 
Subsequently 

since it is well-known that 

Rmin < R. 

< (Pv - PJIPL 

The last term on the left-hand side of (2-4) may 
therefore be omitted so that the equation 
becomes 

RR + $ Iti2 M (pv - pJpr.. 

3. GROWTH OF VAPOUR BUBBLES 

Neglecting the influence of buoyancy and 
friction, one may write the following energy 
equation : 

heat passing across the interface plus kinetic 
energy of bubble expansion = heat of vapor- 
ization entering the bubble plus work of pressure 
less work of surface tension. 

Explicitly written, the equation is 

kA at 
0 

ar =R X d7 + d(pe VPL X ~~12) 
r 

= L pvdV+ (Pv -ps)dV- adA (3-l) 

Making use of equation (2-l) the above ex- 
pression reduces to the purely thermal equation 

kA 2 
0 ar r=R 

xdr=LpvdV (3-2) 

In order to integrate this apparently simple 
equation, one must have recourse to the equation 
of Navier-Stokes, the equation of continuity as 
well as to the heat conduction equation of 
Fourier-Kirchhoff. Apart from the complexity 
of the calculus, the various simplifications 
which must be introduced will lead finally to an 
approximate solution. It seems therefore ade- 
quate to start from the beginning with a reason- 
able approximation of the temperature field 
within the boundary layers of the bubbles. 

Since the works of Bof;njakoviC1 [14] and 
M. Jakob [ 151, several studies have been devoted 
to the pursuance of a relation for the growth of a 
bubble during its rise. Having gathered a large 
quantity of experimental material, W. Fritz [16] 
equated the adhesive force of a bubble to its 
buoyancy at the break-off moment, and intro- 
ducing experimental coefficients, arrived at the 
following semi-empirical formula for the average 
radius of a departing bubble 

Ro = 0.0104 0 [c/g (pi - pv)]& (3-3) 

In this formula the bubble is considered to have 
a spherical shape at its departure. Verification, 
by M. Jakob and co-workers, of the formula has 
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shown that it is in accordance with a statistical 
distribution of the then available experimental 
data [20]. 

BoGrjakoviC in his book on Thermodynamics, 
and shortly after him M. Jakob, proposed a 
simple model of nucleate boiling by supposing 
that the latent heat penetrating by vaporization 
into the bubble is equal to the surface heat 
transfer at the interface. This is expressed by 
equation (3-2). 

According to these authors “generally a 
vapour bubble will be surrounded by a very thin 
boundary layer of liquid across which the 
temperature decreases from the higher value 
existing in the superheated liquid to the satura- 
tion value.” 

This means that in the opinion of these authors 
the rising bubble does not carry with it its own 
boundary layer, but simply that the slightly 
superheated bulk liquid feeds the bubble with 
heat and vapour. The boundary layer of the 
bubble would therefore appear and disappear 
almost instantly, corresponding to the momen- 
tary position of the bubble. 

These assumptions lead to the equation 

dQ = L pv dJ’ = hA (tb - ts) dT (3-4) 

where tb is the bulk temperature and ts the 
saturation temperature of the vapour. 

For a spherical bubble equation (3-4) becomes 

li = h (tb - ts)/L pv. (3-5) 

The same model was used by Fritz and Ende [27] 
in their derivation of the formula 

R = 2 @w - @ cL PL (ar/T)t* 

LPV 
(3-6) 

Similar assumptions lead to 

A = Ck (tw - ts) 
L Pv 

- (?rar)-J (3-7) 

with C = 1/3 according to Plesset and Zwick 
1171 

and C = rrr/2 according to Forster and Zuber 
WI. 

The above formulae are based on the assumption 
that the vapour-liquid interface of a bubble may 
be regarded as a plane surface. 
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The curvature of the interface was first taken 
into account by Carslaw and Jaeger [19] who 
found for a spherical hole situated in an infinite, 
uniformly superheated bulk of liquid, the f 
ing temperature gradient 

= (tb - 1s) [(~a+ + l/R], 
r=R 

121 to an expression which enabled Forster [ 
improve the formula of Fritz (3-6) by introducing 
the correction factor 

c = 4 [l + (I + 2 ?r/JCq] > 1, (3-8’) 

where the dimensionless “modulus of Jakob” 

Ja = CL PL (tw - &)lL pv (3-9) 

represents a characteristic group appearing in 
most of the formulae regarding the evolution of 
the bubbles. Formula (3-8’), already represents 
remarkable progress, but it does not take into 
account the motion of the bubble and that of the 
surrounding liquid. For the moderate velocities 
frequently encountered, these influences are 
negligible and the formula may be used as a 
satisfactory approximation. This is no longer the 
case at higher velocities, since then the ascending 
and descending currents associated with the 
motion of the bubble must strongly influence the 
growth and the motion of the bubble. 

Returning to equation (3-2) we shall assume 
that the bubbles carry with them thin layers of 
superheated liquid, broken away at their de- 
parture from the layer of the heating surface. 
We shall further assume that the temperature 
field of such a boundary layer depends upon the 
following quantities : the radial co-ordinate 
(r-R) and the corresponding reference length 
(R’--R), for the boundary layer; the character- 
istic temperature difference At = (tw - Is) and 
the reference length Ro, for the departing bubble; 
the physical parameters of the medium CL, L, a, 
PL, pv; the time r. 

Dimensional analysis leads to formal ex- 
pressions of the following kind for the tempera- 
ture field within the boundary layer of the bubble : 

[t] = const. At x Jam x (aT/R;)m’ 

x [(r - R)/(R’ - R)]m” (3-10) 

bllow- 

(3-8) 
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The solutions of (3-2) formed on the basis of 
(3-10) must satisfy the following boundary 
conditions 

tr=R = ts; tr=R’ = tb; 

@t/a$=R # 0; (&/&),=R~ = 0. > 

(3-11) 

The last condition (at/&)+R, = 0 expresses the 
fact that the transition from the bulk to the 
boundary layer of the bubble is smooth, without 
temperature gradient, as shown in Fig. 5. 

FIG. 5 

We will now build up a suitable and sufficiently 
general expression for the temperature field 
across the boundary layer of the bubble, which 
fits the conditions (3-11). For the sake of 
simplicity we shall introduce the dimensionless 
spatial variable 

x=(r- R)/(R’ - R), 0 < x 9 1, (3-12) 

observing that 

1 
(Var) = Rl _ R . (a/ax) = AR . (a/ax). 

The linear term 

tr=x. tb + (1 - x) . ts 

gives tl = ts when x = 0, and tl = tb when 
x = 1, but the gradient is 

at,/& = (tb - t&R # 0 

In order to obtain the desired zero gradient, 
without affecting the values of the temperature 
on the two interfaces of the layer, we introduce 

the following additional term 

t2 = (tb - t,) x (1 - .x) (2x - 1) 

and finally a term giving the profile of the 
temperature curve 

t3 = At . x(1 - x)I+~ . Jam C fn(x) . gn(aT/R$ 
n 

where the functions fn(x) and gn(ar/R$ are 
continuous within the intervals of variation of 
their arguments, but so far undetermined. The 
exponent n > 0, has been introduced in order 
to maintain a nul temperature gradient on the 
bulk side of the boundary layer. 

The desired expression for the temperature 
profile is therefore 

t = i tr = x tb + (1 - x) ts + (tb - t,) x (1 
I=1 
- x) (2 x - 1) + At x (1 - ~)l+~ Jam 

x );fn (4 ga (aT/Ri). (3-13) 
la 

The temperature gradient at the vapour-layer 
interface is 

(at/at&R = &L Jam 2 fn(0) gn(aTlR3. 

n 
(3-14) 

Making the substitution 

F @T/R:) = E &(O) gn(aT/R$, (3-l 5) 
12 

relation (3-14) becomes 

(at/ar)rER = ;; Jam F(aT/R$. (3-16) 

Introducing this expression in equation (3-2) 
we obtain 

RdR= sv Jam F(aT/R$ dT. (3-17) 

Integration of this equation gives 

I = UT/&* 

Rz = f Jam+1 . RE 

s 
F(z) . dz, (3-18) 

0 

where the time origin was made coincident with 
the bubble origin, i.e. 
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R=O at T=O. (3-19) putting 

The most simple case is obtained by putting 

F(z) = C = constant, (3-20) 

which leads to the very important result 

R2 = F Jam+1 a7 (3-21) 

which may be compared with the formula (3-6) of 
Fritz and Ende, written in the form 

R = 2 Ja (aT/n):. (3-21’) 

Comparison shows that with 

m = 1 and C = 21+ 

q = 2 and n = 4. 

Likewise, the formula of Fritz and Ende (3-21’) 
results from substituting into (3-25) 

q = 1 and IZ = 2. 

Griffith [21] found that it varies between 
2 and 4.5 and Staniszewsky [22] that it varies 
between 1 and 3, the smaller values being 
erferred to the beginning, the larger to the end of 
the growth of the bubble. 

The relation (3-25) may be written in the 
alternative form 

R/R0 = (I&)~ (T/#‘” (3-26) 
the two formulae become identical. 

More general expressions for the radius R of 
if within the interval TO to 7 the numbers q and 

the bubble may be obtained by substituting 
n do not significantly change. 

It seems necessarv. nevertheless. to comment 
F(z) = Bzf’ 

into (3-18); this leads to 

(3-22) that the macroscopic considerations used in 
order to obtain formula (3-25) do not permit the 
values of C, q and n to be determined by calculus. 

(R/Ro)~ = &) Jam+1 (aT/R$p+l. (3-23) 
4. RISING VELOCITY OF VAPOUR BUBBLES 

Putting The bubble, together with its apparent mass, 
will be considered as a whole and called a 

p + 1 = 2/n, m + 1 = 2/q (3-24) “particle”. Owing to the small size of such a 

we obtain particle, it will be treated as a mass-point. 
The virtual mass of a bubble is 

R/R0 = C . K-) Jaltq(aT/R$l/n (3-25) 

where M, = M + Ma = 3 n R3 (pv + /.J PL); 

C = (n B)t its buoyancy is 

This is a wide-range expression for the radius- 
time relationship, particular cases of which F=g(PL-Pv)V=~~R3g.(PL-Pv) 

have already been obtained by different authors. 
So, for example, Forster [12], assuming an where g is the acceleration due to gravity; the 

exponential temperature distribution across the frictional drag on the bubble is 
boundary layer of the heating surface, i.e. 

W = 5 A;, PL 912 

t - ts = (tw - tJ exp (--x/H), where 

where H is a reference length, obtained the fol- AI,. = area of the transverse section of a 
lowing formula for bubbles which have grown particle; 
larger than the thickness of the boundary layer 5 = coefficient of friction for Re = 2R’vlv. 
of the heating surface 

In order to simplify the calculus, the particle will 

R - 2 (H Ja)* (aT/?7)1’4. be assumed to be of spherical shape. Since 
Re = 2000, resistance is quadratic and 5 M 055 

This expression may be deduced from (3-25) by [23]. 
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The momentum equation of such a particle is 

d”; (Mu u) = & [(M -I- Ma) v] = F - W (4-l) 

Introducing the values of Mv, F and Was well as 
the new constants 

g1 = g(PL - PV)/(PV + ELM) 
51 = 8 i(1 + /-Y3 PLI(Pu + MU.) 1 

(42) 

equation (4-l) takes the form 

ri + 3 (Iri/R)o =g~ __ &v"[R (4-3) 

This Ricatti equation has to be integrated under 
the initial conditions 

T;=O I u-o* G-41 

In order to integrate this equation it 3s necessary 
to know either R as a function of the time T or the 
velocity 21 as a function of R and T. 

Two different phases of the motion of a bubble 
must be distinguished, namely (a) the bubble 
still adhering to the plate, before its break off; 
and (b) the free ascending bubble. 

We begin with the second phase, that of the 
free rising bubble. We introduce into equation 
(4-3) the expression (3-26) for the radius R, which 
we write in the simpler form 

R = b ~11~ with b = (K~~K)~ ~;l’n. (4-5) 

Hence 

The integration of this equation is shown in the 
appendix. The solution, corresponding to con- 
dition (4-4) is 

0 = (glwl)* ,azn * &+1(qx)/&J (qx) (4-7) 
where 

p = (4 - ~)~(2~ - 11, X = T@a-n’sn, 

The asymptotic value of (4-7) for T -+- 00 is, as 
shown in the appendix, 

u = (gr b/&y . T=-* (4-81 

It is possible to reach solution (4-8) directly, 
by considering equation (4-3) and examining the 
relative importance of its different terms. 

Indeed the terms on the left-hand side of (4-3) 
concerning the inertial effects, are negligible in 
comparison with the buoyancy or the resistance 
terms. Neglecting the left-hand side of equation 
(4-3) this differential equation reduces to the 
algebraic equation 

gl - 11 G/R = 0 (4-9) 

the solution of which is 

v = fsl R~~l~~ (4-10) 

and introducing expression (4-5) for the radius 
R, the solution becomes 

u = (gr b/{,)1 .1p (4-10’) 

which is identical to (4-8). 

As previously shown, the number n takes the 
value 1 to 4, depending on the stage of the 
motion of the bubble. 

We now turn our attention to the first phase of 
the evolution of a bubble, i.e. the period during 
which the growing bubble is still attached to the 
plate. As shown in Fig. 3, during this stage we 
may put . 

u m R. (4-l 1) 

Indeed, since the bubble is of an almost spherical 
shape its centre of gravity is at a height h above 
the plate 

hwR 

so that the velocity of the centre of gravity is 

v=ttS=S:ri 

as assumed. 
Introducing equation (4-11) into (4-3) we ob- 

tain 

R . fi + (3 + (1) AZ - gr R = 0. (4-12) 

The initial condition remains the same as before 

7=0, R==O (4-4) 

so that we may try a soIution of the form 

R-c.+ (4-13) 
which gives 

m = 2, c = g1/2 (2 & + 7) 

and subsequently 

R = $3 T2/2 (2 51 ,-i- 7), 
0 = g1 T/(2 51 + 7). > 

(4-M) 
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From these two equations, by eliminating the 
time variable we obtain 

2, = tgr R/q51 + 35)la (4-15) 

an expression similar to (4-8) and (4-10). 
By division we obtain the very simple relation 

v = 2R/r. (4-16) 

The equations (4-14) show a quadratic time de- 
pendence of the radius and a linear time 
dependence of the velocity. 

Since in general 

11 =% 3.5 

comparison of equations (4-10) and (4-15) shows 
a sudden jump in the velocity of the bubble from 
shortly before the departure to shortly after it. 

This seems to be in contradiction to the 
observations of Max Jakob and co-workers, 
who report that between the velocity of the 
attached bubble and that of the departing one, 
there is no appreciable difference [IS]. 

In the next section it will be shown that there 
is no contradiction between the statement of 
M. Jakob and the equations (4-14) to (4-16), 
since the motion of the attached bubble must in 
turn be divided into two different phases. 

Returning for an instant to equation (4-lo), 
which was deduced for very large values of the 
time parameter, or for negligible inertial effects, 
we will assume that it remains valid for the 
departure conditions of a bubble. For this mo- 
ment, equation (4-10) becomes 

00 = (gi Ro~~l)~ (4-17) 

and introducing the value of Ro given by Fritz, 
i.e. 

Ro = 0.0104 0 [u/g (PL - pv)]f (3-3) 

we obtain for the velocity of the departing 
bubble 

00 = 0.102 (gl ‘VT@ [a/g (PL - ,Q+,)]~‘~. (4-18) 

From equations (4-2) we have 

g1/51 = g (g/5) y (I + $2’3 

so that 

U0 = 0.167 (e/5)” (I + &i’s [“g(pL - pv)/p;]1’4, 

(4-19) 

and with 

$% % I.5 and 5 w 0.55 

we obtain 

uo = 0.166 01 [og (,u - pv)/pg1’? (4-20) 

It will be shown in the next section that, in spite 
of the extension of the domain of validity, 
formula (4-20) is in satisfactory agreement with 
ex~riment~ data. 

5. ANALYSIS OF RESULTS AND CONCLUSIONS 

The results attained in the previous sections 
were based on the following main assumptions: 

ascendingbubblesca~yaround them boundary 
layers of superheated liquid, broken away at 
their departure, from the boundary layer of the 
heating surface ; 

the mass of such a layer is, at any moment, 
of the same order of magnitude as the correspond- 
ing apparent mass of the bubble. 

In order to ascertain how closely these 
assumptions may approach reality and lead to 
useful results, some of the results obtained will 
be compared with corresponding experimental 
data. 

By extending equation (4-10) far beyond its 
range of validity, we obtained equation (4-20), i.e. 

210 = 0.166 et [Ug (pL - pv)/p;]“4. 

If values for boiling water at 1 atm pressure 
are introduced into this relation, i.e. 

B = 50” 

then the formula becomes 

us = 1.17 . [ug (PL - pJ&]1’4 (5-l) 

which is the formula of Peebles and Garber [25], 
obtained experimentally and with the slightly 
different numerical coefficient of 1.18. 

In his book on Heat Transfer [IS] Max Jakob 
reproduces (p. 633, Fig. 29-14) some experi- 
mental data regarding the height h attained at 
different moments during an interval of about 
0.20 s by vapour bubbles in boiling water 
at 1 atm pressure. The figure indicates also 
certain statistical mean velocities v of the rising 
bubbles. From this figure we have extracted the 
data which are shown in Table 1. We shall 
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Tuble 1 
___ ..^ _.__~ ~~~~ 

Time T Height, h Velocity, v Observations 

(s> (cm) (&m/s) 

0.05 0.75 17 break-off 
0.10 1.67 - - 

0.125 2.20 23 - 

@20 4.40 33 - 

zzzzz- -p--p----= 

compare these data with values derived from the 
formulae developed above. 

The break-off velocity of the bubble may be 
obtained either from equation (4-17) or from 
(5-l) which give the same value. Introducing into 
(4-17) TO = 0.05 as given by M. Jakob, p = l-50 
and Re = O-125 cm (as resulting from formula 
(3-3) of Fritz) we obtain with 

gio = 656 and 510 = 0*25 

the value 

ue = (gl.0 ~0~~3.0)~ = (656 x 0*125/O-25)* 

= 18 cm/s 

This velocity differs by less than 6 per cent from the 
value given by Jakob in the above-mentioned 
figure. It wilI be used as a reference value in the 
further calculations. 

Since the interval of 0.20 s is not too large, it is 
permissible to assume that during this interval 
exponents 1 /q and 1 /n in equation (3-25) remain 
practically unchanged. By combining relations 
(4-IO), (4-17) and (3-26) we deduce therefore 

v = 2%) (~O~~)l’~ . 
g1/51 * 

-- 
[ 1 g10/2;10 ’ 

(T~TO)l’Z?~ (S-2) 

and put for the whole interval 

n=2 (5-3) 

As for the coefficient of apparent mass p, for the 
interval 7 = 0.05 to 0.15 s, we will put 

#iZ = l-5 (l-7) 

for T = 0.20 s, since then the velocity of the 
rising bubble has attained approx. 0.30 m/s and 
the distance of the bubble from the plate is 
about 5 cm, we may put 

p = I*_t = 1.34 (l-8) 

the bubble will be The height attained by 
approximated by putting 

V 7 (5-4) 

Putting n = 2 and vo = 18 cm/s leads to the data 
of Table 2 

It is easily seen that in spite of the many simpli- 
fying assumptions, formulae (4-10) and (3-25) 
lead to satisfactory agreement with experi- 
mental data, since differences are less than 6 per 
cent for the velocities and less than 13 per cent for 
the attained heights. 

The above considerations were all for free 
ascending bubbles. 

We turn now our attention to attached bubbles, 
just before departure. Equation (4-142), i.e. 

0 = glT/@ ii + 7)~ 

gives for the break-off moment 

210 = 4.4 cm/s, (5-5) 

whereas Max Jakob in reference [15], as well as 
other authors, states that towards the break-off 

Table 2 
- ---I__ 

Time 

;I 

_~ 

velocity height 
UCGlC VNiC%M halo h rnf?JiR 

(cm/s) (cm/s) (cm) Cc@ 

0.05 I.5 0.36 2624 18 17 0.72 0.75 
0.10 ::: 0.36 2624 21.3 - l-70 1.67 
0.125 0.36 2624 226 23 2.26 2.20 
0.20 1.34 0.32 3730 31.2 33 5.00 4.40 

=zz==zp---- .~=zp-_ ____ ____ -... -.---- -.- 
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moment the velocity of attached bubbles is 

uo = 17 cm/s (5-S) 

i.e. almost the same as after the break-off. This 
discrepancy is nevertheless easily explained as 
follows. 

From relation (4-16) we deduce 

R = vr/2 (5-6) 

so that for the break-off moment with the 
experimental data 

70 = 0.05 s 

as given by Jakob, and velocity as resulting from 
(5-5) 

uo = 4.4 cm/s, 

we obtain 

RO = 0.11 cm; (5-7) 

whereas the semi-empiric formula (3-3) of Fritz 
gives 

RO = O-125 cm, 

a very close value for a statistical quantity. 
Now returning to the above-mentioned dis- 

crepancy, we shall show that as long as the 
attached bubble keeps a spherical shape, formulae 
(4- 14) remain fully valid. 

During an interval 0 to T, (T < TO), the centre 
of a spherically shaped, attached bubble attains 
a height 

h w. R, (5-S) 

so that its mean rising velocity is 

vm = h/T R+ R/T. 

From equations (4-14) it follows that 

(5-9) 

lT 
Vm = - 7 

s 
v dr = gl r/2 (2 51 + 7) = R/r 

0 

i.e. the same as above. 
Formulae (4-14) are therefore correct and 

valid, but only for spherical bubbles, directly 
attached to the heating plate. 

But as observed by Max Jakob and others, 
and shown for example in reference [15] (p. 629, 
Fig. 29-12) the bubbles, shortly before leaving the 
heating surface, generally form a stem-like pro- 
longation by which they remain attached to the 

plate, whilst their spherical part begins to rise, 
permitted by the great extensibility of the stem. 

The adhesive force, retaining the bubble to the 
surface, is 

F’ w2rrra (5-10) 

where r is the radius of the transverse section 
of the stem, near the hot plate (Fig. 6). 

FIG. 6 

The motion of the bubble remains governed 
by an equation similar to (4-l) but with an 
extra term allowing for the above adhesive 
force, i.e. 

&l,.u)=F- W-F’. (5-l 1) 

As previously shown, the inertial forces, on the 
left-hand side of this equation, are negligible, 
compared with the buoyancy and frictional 
forces, so that they may be omitted. Equation 
(5-l 1) reduces to 

F- W-F’=0 (5-12) 

But it is easy to show that the adhesive force F’ 
is also negligible compared with the buoyancy 
or the friction, since the stems of the bubbles are, 
comparatively, very thin, i.e. r < R. 

We may therefore write without much error 

F- W=O. 

But this is equation (4-9) and leads to solution 
(4-lo), i.e. to values of the same order of magni- 
tude as those observed by M. Jakob and co- 
workers. The observations of these authors are 
therefore confirmed also by calculus. 

The above analysis of the behaviour of 
attached bubbles has the advantage of per- 
mitting an important conclusion, namely that 
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the motion of attached bubbles before their 
departure, is a step-by-step process and that the 
first step, regarding the growth of spherical 
bubbles, directly attached to the heating surface 
is governed by the two equations (414), and the 
second step, concerning stalked bubbles, depends 
approximately on equation (4-10). 

The satisfactory agreement reached when 
comparing some experimental data with the corre- 
sponding data resulting from the formulae 
deduced in this paper, may be considered as an 
encouragement to take into account the apparent 
masses of the rising bubbles, and this although 
the inertial effects are rather moderate, at least 
at the beginning of the rise. Examination of 
more extensive data than those available to 
author, would certainly lead to a deeper insight 
into the phenomenon of bubble evolution and 
would permit improvement of the attained 
results. 

From this point of view some comments must 
be made with respect to the character of some of 
the parameters entering into the established 
formulae. 

First the “radius” R of the bubble, which is in 
fact the quantity 

R = (3 V/4+3 

which may be considered as representative of the 
volume but in no case of the shape of the bubble. 

In a certain measure the coefficient of apparnet 
mass ,z may act as a corrective in this direction, 
but its appreciation is difficult since no experi- 
mental data are so far available and the com- 
parison with a flattened ellipsoid is valid onIy 
for the begining of the rise. For mushroom-like 
bubbles this approach cannot be m~ntained. 

The exponents l/q and l/n as well as the 
numerical coefficient C in formula (3-25) cannot 
be determined from phenomenological con- 
siderations. The same is true for the frequency 
of the bubble production at a given centre or 
for the distribution of active centres over the 
heating surface. 

In conclusion, though the developed formulae 
may be regarded as being in satisfactory agree- 
ment with experimental data, more precision 
cannot be reached without having recourse to 
molecular theories and to experiments devised to 

obtain a law concerning the variation of the shape 
of the bubbles during their rising motion. 
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APPENDIX 

Integration of Diferential Equation (4-6) 
The general equation of Ricatti, i.e. 

it = P(T) + v Q(T) + v2 R(T) 

reduces to a linear equation of the second order 
if one puts 

resulting in 

ji-(A/R+ Q)j+PRy=O. 

Equation (4-6) is 

d + ; yl* =g1 - -"i;' y-l/n u2 
(A-1) 

thus by putting 

and substituting into (A-l) the result is 

1 - 2a = 4/n; 2(y - 1) = - l/n; 

@y)2 = - 51 glib; G - p2 y2 = 0 

the solution of (A-3) is 

y = .n-4l2-n . z, 
[ 
A . 

i . (51 gl/b)” . +-l’za 1 . (A-4) 

Making the following substitutions 

x = 7(2n-1)/2n 
1 

p = (4 - n)/(2n - 1) 

i 

(A-5) 
2n - 1 

II= 2n (sl WY 

solution (A-4) becomes 

y = x-p . Z, (iqx) 

and since [26] 

(A-6) 

$ [x-p . Zp (iqx)] = - x-p . Zp+l (iqx) . iq 

it follows that 

(A-7) 

3/y = -iqZ Z,+.l (iqx)/Z, (iqx). (A-8) 

In order to ensure a finite value of the velocity 

g1 51 jj + f 7-1j _ b .+/n 
v for T = 0 (i.e. x = 0) we choose 

Y = 0. (A-3) Bessel function of the first kind, i.e. 

This is a generalized Bessel equation of the form .JP (iqx) = ip 1, (qx) 

for Z, the 

CL2 - p2 y2 
+ *z 

I 
.y=o 

the general solution of which is [26] 

y = 7= 2, @TY), 

where Z is a Bessel function satisfying the 
integration conditions. 

Since 

so that finally 

21 = (glY/53)i . +n . ~pc1(q.x)l&I(qx). (A-9 

Since for 7 -+ co 

lim r, (qx) = .P/(~x qx)& 
,“+co 

which is independent of the value of the index p 
it results that 

lim v = (gr b/cl)“- . 4’2% 
7-m 

(A-IO) 

which is expression (4-8) or (4-10’). 
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RCum&Les hypotheses suivantes ont Cte faites dans le cas de l’ebullition par nucleation en reservoir 

dans le regime de bulles de vapeur individuelles: (a) les bulles montantes emportent evac elles de 

fines couches limites de liquide surchauffe, brisk au moment de leur depart, a partir de la couche 

limite de la surface chauffante; (b) les perturbations produites dam le sein du fluide sont les memes que 
si les bulles Btaient des corps solides de meme taille et de mtme forme. 

En employant la thtorie des masses virtuelles et les hypotheses preddentes, on a expose des relations 
pour la vitesse de croissance et la vitesse d’ascension des bulles, qu’on a trouvt etre en accord satis- 

faisant avec les don&es experimentales disponibles. 

Zusammenfassung-Die folgenden Annahmen sind ftir den Fall des Blasensiedens bei freier Kon- 
vektion im Bereich der einzeln auftretenden Dampfblasen getroffen: (a) aufsteigende Blasen tragen 
eine dtinne Grenzschicht tiberhitzter Fltissigkeit mit sich, die sie beim Ablosen aus der Grenzschicht 
an der Heizihiche mit herausreissen; (b) die Storungen, die von den Blasen in der umgebenden 
Fhissigkeit verursacht werden, sind die gleichen, wie wenn die Blasen feste Korper von gleicher Form 
und Griisse waren. 

Unter Verwendung virtueller Massen und den obigen Armahmen werden Beziehungen fur das 
Anwachsen und die Steiggeschwindigkeit der Blasen entwickelt, die sich als zufriedenstellend 

iibereinstimmend mit verftigbaren Versuchswerten erweisen. 

AEEOTanHJr-C~enaIIbI cne~yIomKe ~onyII&eHnR ~JIH cnyqafl IIy3bIpbKOIIOrO KnneHKn B GOJIb- 

IIIOM 06’bCMe B peWIMC OTAeJIbHbIX IIy3bIpbKOB IIapa : (a.) nOAHnMaIOIIF?CfI ny3bIpbIER BbIHOCfIT- 

CR BMeCTC C TOHKnM IIOrpaHHqHbIM CJIOeM IIeperpeTOti WIAKOCTII, OTpbIBaIOIWIMCJI IIpII 

OTAeJIeHnn ny3bIpbKOB OT IIOBepXHOCTM HarpeBa ; (6) BOSMymeHIIR BHyTPn WIAKOCTM, 

BbI3BaHHbIe IIy3bIpbKaMK, COBepmCHHO aHaJIOrWIIIb1 BOBnAtiCTBunM TBepAbIX YaCTnII TaKOn 

me (Pop~bI II pa3Mepa. 

c IIOMOIIJLICI TeOpIin 3IjjIjjeKTHBHbIX MaCC I4 BbImeyKa3aHHbIX ~OIIyIIIeHIIfi, IIOJIyWHLI 

ypaBIIeHKR &JIEl CKOPOCTK POCTa II IIOA’beMa ny3bIpbKOB, AaIOIIIIre y,Y!JOBJIeTnOpnTCJILHOe 

COrJIaCOn3Kue C K3nCCTIIbIMM 3IFCnePMMeHTanbIlbIMII AaHIIbIMII. 


